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I could not, without effort, constrain myself to the task of either
recalling, or constructing into a regular narrative, the whole bur-
then of horrors which lies upon my brain.

—Thomas DeQuincey, Confessions of an Opium Eater

Ever since Peter Laslett and John Harrison (1963) dis-
covered that multigenerational households were rare
in preindustrial northwestern Europe, historians and de-
mographers have been trying to estimate the effects of
preindustrial demographic conditions on the potential for
multigenerational households. Starting with back-of-the
envelope calculations by Ansley Coale (1965), David
Glass (1966), and E.A. Wrigley (1969), the techniques for
assessing the effects of demography on historical kinship
patterns have become more and more elaborate, culmina-
ting in complex demographic microsimulation models
consisting of many thousands of lines of computer code
(Wachter, Hammel, and Laslett 1978; Ruggles 1987;
Smith 1987).

All demographic models incorporate simplifying as-
sumptions, and most investigators are well aware of the
resulting potential for error. This article argues that the
errors in the historical demographic models of kinship
are not just misspecifications that tend to cancel one
another out; instead, the assumptions common to all ex-
isting models lead to errors of consistent direction that
tend to cumulate.

In real populations, members of the same kin group
tend to share many of the same characteristics—what one
might term a demographic family resemblance. Family
members typically belong to the same ethnic group, class,
and religion and are likely to reside in the same region.
For these reasons, members of the same kin group usual-
ly resemble one another in demographic behavior more
than they resemble persons randomly selected from the
population as a whole. For example, a kin group in which
the members are poor will usually experience systematic-
ally higher mortality than a kin group with wealthy mem-
bers.

By contrast, models of kinship assume that most dem-
ographic events occurring within a kin group are inde-
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pendent of one another. That is, the characteristics of
one member of a group of kin are assumed to be entirely
uncorrelated with the characteristics of other members of
the kin group. I call this the Whopper Assumption.'

Because of the Whopper Assumption, models of kin-
ship will produce less variation in the frequency of kin of
any particular type than would occur in a real popula-
tion. Our models will generally underestimate both the
proportion of people with many kin and the proportion
of people with few kin. As I will show, the magnitude of
error is potentially large. In addition, the Whopper As-
sumption can affect the expected number of kin in a pop-
ulation.

What follows is presented in the terms of demographic
microsimulation models—currently the technique of
choice for analyzing the demography of the family and
kinship—but most of my comments would apply equally
to other kinds of kinship models. In brief, microsimula-
tion involves creating a hypothetical population by ran-
domly assigning demographic events—births, deaths,
and marriages—to individuals on the basis of predeter-
mined probabilities. One can keep track of the family re-
lationships within the simulated population and thus
derive estimates of the frequencies of living kin.2 The mi-
crosimulation approach is especially appropriate for
estimating the frequency distribution of kin instead of
just mean numbers of kin (Ruggles 1990). The difficulty
is that the estimates of distributions are systematically
biased.

The Fertility Problem

The correlation between the fertility of mothers and
that of their daughters is well known (see, for example,
Pearson and Lee 1899; Huestis and Maxwell 1932; Berent
1953; Kantner and Potter 1954; Duncan et al. 1965; Hen-
dershot 1969; Johnson and Stokes 1976; Anderton et al.
1987; Pullum and Wolf 1991); it seems likely that the fer-
tility of other kin is also correlated. Much of this correla-
tion results from differentials in fertility between popula-
tion subgroups. For example, in the United States in
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1900, fertility behavior varied dramatically according to
family background: blacks, farmers, southerners, East-
ern and Southern European immigrants, and much of the
working class were characterized by high fertility, where-
as low fertility was the norm for the bourgeoisie, families
with high education, and residents of the urban North-
east (King and Ruggles 1990; Guest 1982).

Beyond the fertility correlations within population
subgroups, there are also fertility correlations introduced
at the level of the family. For example, both traditional
and modern contraceptive knowledge was probably often
transmitted by the family. To the extent that fecundity is
genetic it would also contribute to fertility correlations
within kin groups.

For all these reasons, in real populations some kin
groups have systematically high fertility, and others have
systematically low fertility. In microsimulation models,
however, births are assigned to women without reference
to the fertility experience of other members of the kin
group. Simulations therefore show less variation between
kin groups in total fertility than is found in real popula-
tions. Thus, in a real population a woman with high fer-
tility is likely to come from a family with many children,
and her children are likely to have high fertility. Such a
woman typically ends up with large numbers of grand-
children. Conversely, a woman with low fertility in a real
population is likely to have few grandchildren. Because
no such fertility correlations exist in simulated popu-
lations, we expect such models to yield unrealistically ho-
mogeneous overall distributions of grandchildren.

As simulation studies have shown, the frequency of kin
such as aunts, uncles, nephews, nieces, and grandchildren
in a population is quite sensitive to the level of fertility
(Ruggles 1987, Appendix D). The more distant the rela-
tionship, the greater the potential impact of fertility. For
example, the number of great-grandchildren an individ-
ual has is influenced not only by the fertility of grandchil-

dren but also by the fertility of children, since the latter
determines the number of grandchildren.’

Table 1 represents an attempt to assess the impact of
correlated fertility on the frequency distribution of
grandchildren. The figures shown were generated by the
MOMSIM kinship microsimulation model (described in
Ruggles 1987). All three runs shown employ demograph-
ic parameters designed to mimic the behavior of the U.S.
population around 1900.* The analysis was restricted to
very old women (aged 80-84) with at least one ever-
married child, in order to maximize the potential for
grandchildren.

The first column shows the standard output of the
model: like all other models of kinship, it assumes that
the fertility of the younger generation is entirely uncor-
related with that of their mothers. In the second column,
I have introduced a small correlation between number of
siblings and number of children (+ = .0132), and in the
third column, there is a larger correlation (# = .0565).}
The magnitude of intergenerational fertility correlation
observed in real populations typically falls within this
range.®

The average number of grandchildren per woman,
shown in the first row of table 1, is unaffected by the in-
troduction of fertility correlations; the small differences
shown between the three runs are the product of the ran-
dom element of microsimulation. But the standard devia-
tions—shown in the second row—are different, especial-
ly for women nearing the end of their childbearing years:
the population with no correlations is significantly more
homogeneous than the others. Even introducing a small
correlation leads to an increase in the standard deviation
of grandchildren of about 12 percent; the high correla-
tion raises the standard deviation by 26 percent. The last
two rows show the percentage of woman with no grand-
children and with twenty or more grandchildren in each
of the simulated populations. Analysts of kinship are

Achild

M es of Gr

TABLE 1

under Alternate Assumptions of

Intergenerational Fertility Correlations for Women Aged 80-84 with
One or More Ever-Married Children (Simulations, U.S. 1900)

Association of

fertility with None Low High

number of siblings (R? < .0001) (R? = .0132) (R? = .0565)

Mean number of 10.78 10.84 10.72
grandchildren

Standard deviation 8.32 9.32 10.50
of grandchildren

Percentage without 4.37 7.18 10.24
grandchildren

Percentage with 12.97 15.03 16.91
20+ grandchildren

N 2,105 2,089 2,099
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often most interested in estimating the percentage of per-
sons without any living kin of a given type. From this
point of view, the most relevant statistic is the percentage
of women without any grandchildren. The percentage of
women with grandchildren was more than twice as great
in the simulation incorporating high fertility correlation
than in the simulation without any fertility correlation. If
even very small correlations in fertility across generations
exist in real populations, then our models will systematic-
ally overestimate the proportion of women with grand-
children.

This example illustrates the potential impact of only
one facet of the Whopper Assumption. Completed fertil-
ity is not the only demographic factor that can influence
the distribution of surviving grandchildren in a popula-
tion. Child mortality, age at marriage, proportion who
marry, widowhood, remarriage, child spacing, and age at
cessation of childbearing are all potential influences. All
three runs shown in table 1 assume that these factors are
entirely uncorrelated across generations. A truly realistic
model that incorporated correlations for all sorts of dem-
ographic behavior would doubtless reveal considerably
more dramatic effects on the distribution of grandchil-
dren.

The Mortality Problem

The effect of correlated mortality probabilities be-
tween members of the same kin group is similar to the ef-
fect of correlated fertility.” Kin groups with consistently
high death rates tend to have few living kin of any par-
ticular type, and kin groups with low mortality tend to
have high kin counts. In populations whose mortality is
largely a result of contagious diseases, one expects the
correlations of mortality within kin groups to be particu-
larly high. Because simulation models do not take such
correlations into account, they yield a more homoge-
neous overall distribution of kin than is found in a real
population.

We can observe the effects of the Whopper Assump-
tion of mortality through use of the surviving-children
variable in the 1900 U.S. census. This variable can be
used to calculate the distribution of number of children
dying. The same distribution can be estimated by simula-
tion. Once again, I used the MOMSIM model of kinship
to simulate the distribution of surviving children in 1900.
As in other simulation models, the death of each child
was assigned without reference to the mortality ex-
perience of the rest of the family.

Table 2 compares the mortality experience of children
in the simulated population with that of the observed
population. For this example, I restricted the analysis to
families in which the mother was 55 to 84 years old;
younger women were excluded so that a substantial pro-
portion of the children would be dead, and older women
were excluded because internal evidence suggests a high
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TABLE 2
Measures of Child Survival for Women Aged 55-84
with Five Children-Ever-Born (Simulated and
Observed Populations, U.S. 1900)
Simulation Census
Percentage of children dead 31.6 31.5
Mean number of children dead 1.58 1.58
Standard deviation 1.02 1.36
Distribution of number of
children surviving
(percentages)
N 14.4 26.3
4 35.0 27.4
3 32.8 21.8
2 13.9 15.0
1 3.7 6.2
0 0.1 3.4
N 6,650 1,770

degree of misreporting of children-ever-born and chil-
dren surviving among women of advanced years. In addi-
tion, I limited the population to women with five chil-
dren-ever-born, to avoid problems associated with corre-
lation between parity and child mortality.® The age dis-
tribution of the simulated mothers was constrained to be
identical to that in the observed population. As shown in
the first two rows of table 2, the model performs well on
expected number of children dying. The distribution of
surviving children is given in the lower part of the table.
The expected finding—that the Whopper Assumption
leads to greater homogeneity of mortality experience in
the simulated families than in the census families—is
borne out by these figures. The percentage of women
with all their children surviving is almost twice as great in
the census population as in the simulated population,
whereas the percentage with all their children dead is
about thirty times greater in the census population than
the simulation.

The implication is clear: a simulation model based on
the assumption that everyone in the population has equal
chances of dying at a given age allocates mortality much
too evenly across kin groups. As a consequence, the dis-
tribution of living kin is more homogeneous in a demo-
graphic model than in a real population. Simulations un-
derestimate the percentage of people without any living
kin of a given type and also underestimate the percentage
with many living kin of a given type.

The Whopper Assumption and Expected
Numbers of Kin

In the preceding examples, the Whopper Assumption
resulted in a reduction in the variance of kin frequencies
but had no effect on the mean number of kin. In fact, as
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Thomas Pullum (1987) has pointed out, errors in the
distribution of kin also have the potential to distort the
expected numbers of kin, depending on our point of ref-
erence for assessing kin frequencies. Specifically, failure
to account for correlations in the demographic behavior
of different members of the same kin group can bias
downward the mean number of kin.

Consider the case of cousins. To estimate the number
of cousins in a simulated population, one must generate
at least three generations. The average number of cousins
is then determined by counting nonsiblings who share the
same grandparent. In effect, we estimate the distribution
of grandchildren and then assess the number of cousins
from the perspective of each grandchild. Thus, kin
groups with many grandchildren count proportionately
more heavily than kin groups with few grandchildren.
Kin groups with many grandchildren tend to have more
cousins than kin groups with few grandchildren. If we in-
crease the number of kin groups with many grandchil-
dren and the number of kin groups with few grandchil-
dren, we increase the number of cousins because the kin
groups with many cousins are then weighted more heavi-
ly. In other words, variance in the number of grand-
children in a population is positively associated with the
expected number of cousins, even when the mean number
of grandchildren is constant. Because the Whopper As-
sumption biases downward the variance in grandchil-
dren, simulations of kinship tend to understate the ex-
pected number of cousins.

This pattern is illustrated in table 3, which shows
measures of cousins calculated from the perspective of
the same population of grandchildren simulated in table
1. Even though the mean number of grandchildren in
table 1 was virtually the same across the three simulation
runs, the mean number of cousins is highly sensitive to
fertility correlations across generations. With increasing
correlations, the expected number of cousins goes up.’

The expected number of siblings can also be biased by
the Whopper Assumption (see data in table 4, which is a
rearrangement of the data in table 2). By measuring from
the perspective of the surviving children themselves, we
are able to estimate the distribution of surviving siblings.
Once again, the Whopper Assumption leads to an under-
estimate of the mean number of kin. The same kinds of
errors can be expected to occur in the estimation of kin
types such as aunts, uncles, nephews, nieces, and siblings-
in-law.

The Whopper Assumption and
Multigenerational Families

Historical research on the family has prompted the de-
velopment of several demographic models of kinship.™
For the most part, these models are designed to estimate
the maximum frequency of multigenerational families or
stem families under preindustrial demographic condi-
tions. The stem family, as 1 am using the term, denotes a
family in which one child remains in the parental house-
hold after marriage, and any other children leave home
and establish independent households when they get mar-
ried. In cross-sectional data on household structure, stem
families are usually identified by the presence of a child-
in-law or grandchild of the eldest generation.

Despite the theoretical importance of the stem family,
our evidence on family structure in preindustrial Western
Europe indicates that such families were rare (Wachter,
Hammel, and Laslett 1978; Ruggles 1987; see also Berk-
ner 1972). The historical models of kinship have attempt-
ed to assess whether or not the low observed frequency of
stem families can be ascribed to the preindustrial Western
European pattern of late marriage and early death. For
several reasons that I have elaborated elsewhere, differ-
ent models have reached different and sometimes contra-
dictory conclusions (Ruggles 1987, chapter 4). But all

TABLE 3
Measures of Cousins under Alternate Assumptions of Intergenerational

Fertility Correlati for Gr

dchildren of Women Aged 80-84
(Simulations, U.S. 1900)

Association of
fertility with None

Low High

number of siblings (R? < .0001) R? = .0132) (R? = .0565)
Mean number of 12.10 13.80 16.03
cousins
Standard deviation 8.84 10.02 11.28
of cousins
Percentage without 7.94 6.18 4.92
cousins
Percentage with 17.01 23.65 31.90
20+ cousins
N 22,557 22,659 22,451
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TABLE 4
Measures of Sibling Survival, Children of Women Aged 55-84
with Five Children-Ever-Born (Simulated and
Observed Populations, U.S. 1900)
Simulation Census
Mean number of siblings 2.73 2.96
Standard deviation 0.92 1.04
Distribution of number of
siblings surviving
(percentages)
4 21.1 38.4
3 40.9 32.0
2 28.8 19.1
1 8.1 8.8
0 1.1 1.8
N

4,549 1,212

these models—including my own—substantially underes-
timate the impact of demographic constraints on the
maximum frequency of multigenerational families.

The maximum frequency of multigenerational families
in a population is affected by several demographic fac-
tors. The most important of these is probably a mother’s
age at the birth of her children, or generation length. In
natural fertility populations, generation length is largely
a function of marriage age. The limited evidence avail-
able suggests that age at marriage can be significantly
correlated across generations.!' Generation length is crit-
ical because it counts twice; the length of time all three
generations are alive simultaneously depends on genera-
tion length of both the eldest generation and that of their
children.

The fact that two generation lengths are involved gen-
erates a prime situation in which violations of the Whop-
per Assumption can occur. Suppose we are looking at a
population in which the members of some kin groups
have systematically long generations while others have
systematically short ones. The frequency of grand-
children is minimized when both parents and children
have long generations. Therefore, we would expect
members of kin groups with long generations to have ex-
ceptionally few grandchildren; many of them would have
no grandchildren at all. Among the kin groups with short
generations, on the other hand, there would be unusually
large numbers of grandchildren.

In accordance with the Whopper Assumption, models
of kinship assume that all individuals in the population
have an equal probability of long generations, regardless
of the behavior of the other members of their kin group.
The odds of long generations occurring in both the par-
ents’ generation and the childrens’ generation is lower in
a simulated population than in a real population. Thus,
the simulated population will contain a smaller propor-
tion of people with exceptionally few grandchildren than
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is found in the real population. Most important, the sim-
ulated population will contain fewer people at any mo-
ment who lacked grandchildren altogether. Because only
one grandchild is needed to form a three-generation
family, demographic models tend to overstate the overall
potential for three-generation families.

In the case of preindustrial stem families, the problem
of correlated generation lengths is compounded by the re-
lationship between age at marriage and age at parental
death. Since the preindustrial pattern of late marriage
was at least partly a consequence of people’s waiting to
receive their inheritance before they married, there was
apparently a correlation between marriage age and par-
ental longevity.' Strictly speaking, this is not an example
of the Whopper Assumption as I have defined the term;
it is a correlation between two different demographic
variables. Nevertheless, the consequences are similar. An
association between marriage and parental death mini-
mizes the average interval between marriage and parental
deaths. It reduces the amount of time spent after parental
deaths and before marriage, and it also reduces the
amount of time spent after marriage and before parental
deaths. If those who marry early tend to have parents
who die young and those who marry late tend to have
long-surviving parents, the overall overlap between the
marriage of children and the death of their parents would
be minimized.

An association between marriage and parental death
could have important implications for the potential fre-
quency of multigenerational families. In the most ex-
treme case—if everyone in the population waited for
their parents to die before they married—there could be
no co-residence of parents with married children at all.
All demographic models of multigenerational families as-
sume that no correlation whatsoever exists between age at
marriage and parental longevity; thus the models almost
inevitably overestimate the potential for formation of
stem families. "

Correlations of mortality within kin groups would in-
crease the error further. As noted earlier, the assumption
of uncorrelated mortality leads to overestimates of the
frequency of surviving grandchildren. In addition, the
maximum frequency of stem families is influenced by a
correlation between the mortality of husbands and wives.
The Whopper Assumption postulates that the death of
one partner in a marriage is entirely unrelated to the
death of the other. Although I know of no relevant data
for the preindustrial period, ample evidence exists for a
correlation of the spouses’ longevity in the twentieth cen-
tury; there is no reason to believe that this is a new phe-
nomenon. A correlation between the mortality of hus-
bands and wives is important because it only takes one
living member of the elder generation to form a three-
generation family. If the men and women who survived
long enough to form stem families tended to be married
to one another—and therefore concentrated in a minimal
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number of families instead of randomly dispersed
through the population—the maximum frequency of
stem families would be reduced. To the extent that they
occurred in combination, the long-surviving members of
the eldest generation would be wasted.

This does not exhaust the potential list of effects of the
Whopper Assumption on the expected frequency of stem
families or multigenerational families. Correlations be-
tween kin in fertility, proportions never marrying, migra-
tion, childlessness, birth spacing, widowhood, remar-
riage, and age intervals between spouses could all poten-
tially contribute to heterogeneity in the distributions of
surviving .parents, children-in-law, or grandchildren in
real populations. Such heterogeneity would limit the op-
portunities to form multigenerational families.

Further research is necessary before we can evaluate
how badly these violations of the Whopper Assumption
distort the estimates of demographic models of stem and
three-generation families. Nevertheless, these examples
serve to underscore my comments about the Whopper
Assumption in general. To the extent that exaggerated
homogeneity of demographic behavior yields exagger-
ated homogeneity of kin frequencies, demographic
models tend to underestimate the proportion of indi-
viduals without any kin of a given type. Because all tech-
niques devised to date incorporate the Whopper As-
sumption, all of them tend to overestimate the propor-
tion of the population with one or more available kin of a
given type.

Conclusion

The basic principle holds for all demographic charac-
teristics: one would expect greater demographic homoge-
neity within a kin group than within a group of similar
size comprising individuals selected randomly from the
population. Since microsimulations of kinship ignore the
correlations in demographic behavior within kin groups,
they ordinarily understate the variance of kinship dis-
tributions; for many kin types, they also underestimate
the expected number of kin.

It may be possible to redesign our models to avoid the
Whopper Assumption. A realistic model would have to
incorporate procedures for introducing correlations be-
tween demographic events occurring in the same kin
group. One major problem, however, is that we lack his-
torical data on the demographic experience of kin groups
as a whole. It is unlikely that family reconstitution data
can be pressed into service; because of high migration,
complete demographic information is rarely available for
multiple members of a reconstituted family (Ruggles
1992). More promising are genealogical studies of the
sort being carried out by Fogel (1986) and Dupaquier
(1986).

In general, those who design demographic models of
kinship should be sensitive to the potential for systematic
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error. Despite repeated calls for improved testing of our
models against empirical data, such comparisons are still
extremely rare. If models of kinship are to have any cred-
ibility, we must demonstrate their ability to produce
moderately realistic distributions of kin in a variety of
demographic contexts.

Models that incorporate no correction for the Whop-
per Assumption should be treated with great skepticism.
At best, they can only provide lower-bound estimates of
the proportion of persons with kiving kin of a particular
type or of the proportion of households with multiple
generations." Historians in particular should be wary of
claims that the demographic conditions of preindustrial
Western Europe exercised little or no constraint on the
potential for stem family structure.

APPENDIX
Method of Introducing Fertility Correlations

In the MOMSIM microsimulation model, the number of children
born to each woman is first allocated by generating a single random
number between 0 and 1 and then consulting a cumulative probability
distribution of fertility. There are separate probability distributions
for each of eight current ages and thirty-eight durations of marriage
(for further details, see Ruggles 1987, 163-69, 174-77). Because a
single random number was used to assign the number of children
born, introducing intergenerational correlations was fairly straight-
forward. A random number was generated for each woman to repre-
sent her independent contribution to fertility. Then a second random
number was generated to represent the degree of influence from the
previous generation. For the ‘“‘High”’ correlation run, the degree of in-
fluence was allowed to vary from O (no influence of previous genera-
tion) to 1 (fertility number determined entirely by previous
generation). For the ‘“Low’’ correlation run, the degree of influence
varied from 0 to 0.5. The random number used to allocate fertility for
each woman was then calculated as the average of her own random
number and the random number used for the previous generation,
weighted according to the degree of influence.

This procedure does not yield a flat distribution of random numbers
between 0 and 1, and so an additional step was needed. An unadjusted
correlation between the fertility of mothers and the fertility of
daughters yields an upward bias in the fertility of the daughters. In
real populations, because the average daughter has lower fertility than
her mother, this bias is compensated for (see Preston 1976 for a dis-
cussion of this phenomenon). In addition to the upward bias, the fer-
tility numbers obtained by this method will have too little variance, in-
asmuch as the weighted average produces a concentration of random
numbers around the mean.

For both these reasons, it was necessary to adjust the random num-
bers to obtain a flat distribution between 0 and | for each group of
mothers. Each version of the model was run twice: (1) to determine
the cumulative probability distribution of fertility random numbers
produced by the model, and (2) to apply that distribution to rescale
the random numbers. The procedure was tested for each generation in
each run, and the resulting random number distributions were flat.

The correlation in random numbers between generations was con-
siderably higher than the resulting fertility correlations shown in table
1. The number of children born depends not only on the random num-
ber but also on current age and duration of marriage. The latter fac-
tors are influenced by age at marriage, widowhood, remarriage,
mother’s age, and age intervals between mothers and daughters, all of
which were determined independently for each individual. My pro-
cedure can be viewed as a means of introducing correlations in the
propensity to have children; the actual number of children born de-
pends also on the individual demographic circumstances of each
woman.
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NOTES
Funding for this research was provided by a McKnight-I.and Grant
Professorship and a Grant-in-Aid of Research from the University of
Minnesota. Earlier versions of the article were presented at a confer-
ence on New Directions for Demographic History: A French-Amer-
ican Roundtable, New School for Social Research, New York City,
1986, and at Demographic Microsimulation, International Institute
for Applied Systems Analysis, Budapest, 1987. In a previous article in
this journal (Ruggles 1990), I listed the present article as forthcoming
in a volume of essays to be published by Urban Institute Press, but
that volume was subsequently canceled.

1. Several recent writers on the simulation of kinship—Wachter
(1987), Wolf (1986), and Pullum and Wolf (1991)—implicitly or
explicitly acknowledge the Whopper Assumption.

2. For general descriptions of simulation approaches, see Olinick
(1978), Dyke and MacCluer (1973), Sheps (1969), Menken (1981),
Santow (1978), and Hammersley and Handscomb (1964); also see
Jaquard and Leridon (1973). Microsimulations of kinship include
Howell (1979), Bartlema and Winkelbauer (1986), Wolf (1986),
Rossi (1975), Gilbert and Hammel (1966), and the historical
models cited in note 10. Other relevant applications of
microsimulation are Orcutt (1961), and Horvitz (1971). The most
important analytic and macrosimulation models of kinship are
Lotka (1931), Goodman, Keyfitz, and Pullum (1974), their ‘‘ad-
dendum’” (1975), Pullum (1982), and Bongaarts (1981). On the
limitations of analytic techniques, see Sheps (1969), Barrett
(1977), De Vos and Palloni (1984), and Ruggles (1990). Also see
Pullum’s comments (1982, 564).

3. In the case of fertility, the correlation of demographic events can
occur not only at the level of kin groups but also at the level of in-
dividuals. Just as some kin groups may be characterized by con-
sistently high fertility or consistently low fertility, so can in-
dividual women experience high or low fertility over the course of
their childbearing years. Much of this consistency stems from fac-
tors that also operate at the level of kin groups, such as race,
class, and ethnicity. As a consequence of each woman's in-
dividual circumstances—whether economic, biological, or
cultural—there may be additional consistency of fertility
behavior. The result is that real populations are quite heterogene-
ous with respect to fertility. Demographic models of fertility
behavior have been reasonably successful in capturing this hetero-
geneity, but the models oriented to kinship analysis tend to be less
sophisticated in this respect. If a model understates fertility heter-
ogeneity at the individual level, the biases in kin variance can be
even greater than those resulting from understatement of fertility
heterogeneity at the level of kin groups. Theoretically, the Whop-
per Assumption can exist at the individual level for any
demographic event that can occur multiple times to the same per-
son, including widowhood, divorce, and remarriage as well as fer-
tility. In populations where most people only marry once during
their childbearing period, however, the effects of heterogeneity in
marital behavior are probably small. I have chosen to focus on
the effects of the Whopper Assumption at the level of kin groups
rather than at the level of individuals, because the problem of fer-
tility heterogeneity is already recognized by most of the analysts
doing kinship microsimulation. King and Lutz (1988) provide a
good general discussion of the concentration of parity distribu-
tions; for a variety of approaches used by microsimulations to in-
troduce heterogeneity, see Crafts and Ireland (1975), Barrett
(1971), Ruggles (1987), Venkatacharya (1971). The approaches
used by Smith (1987), Wachter, Hammel, and Laslett (1978) and
Bartlema and Winkelbauer (1986) are also of interest, although
they probably produce somewhat less realistic parity distribu-
tions.

4. The demographic parameters include a median female age at mar-
riage of 22.2, femnale life expectancy at birth of 48.3, and a total
fertility rate of 3.79. To minimize the effects of random variation,
more cases were created for the simulated population than existed
in the actual population. For additional details, see Ruggles
(1987, 111).

5. The method employed for introducing correlations is described in
the Appendix.

6. In the 1910 public use sample of the U.S. federal census (Strong et
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al. 1989), the correlation between the fertility of mothers aged
80-84 and that of their co-resident daughters was .221, which is
roughly the same as my ‘‘High’ correlation. For all daughters
married fifteen years or longer, the correlation with their
mother’s fertility was .171, and for all co-resident mothers and
ever-married daughters (including a high percentage of daughters
married for only one or two years) the figure was .084. Of course,
mothers residing with married daughters may not have been
typical of the population as a whole. Although the association of
fertility between successive generations has been studied exten-
sively, comparison is problematic because the procedures used by
different investigators vary widely. In a study of the British
baronetage and peerage, for example, Pearson and Lee (1899)
found correlations ranging from .42 to .223, depending on
whether more than one daughter from each family and mothers
with brief marriages were included.

My figures represent the correlation between the number of
siblings and children born to women whose mothers were aged
80-84; given the advanced ages of the mothers, virtually all the
daughters had completed their childbearing. A roughly compara-
ble measure, albeit for a small homogeneous population, is pro-
vided by Huestis and Maxwell (1932), who found a correlation of
.124 among 638 families sending children to the University of
Oregon. In general, the correlations tend to be lower in studies
where the daughters were still bearing children. Berent (1953),
however, found a correlation of .187 between children and sib-
lings among 1,482 patients of British gynecologists in 1946. By
contrast, Kanter and Potter (1954) found a correlation of .09
among women in the Indianapolis Fertility Study; and Duncan et
al. (1965) got virtually the same results from the United States
Current Population Survey of 1962. Intergenerational fertility
correlations in Canada, Israel, and Germany appear to be higher,
ranging from about .15 to .32 (Pullum and Wolf 1991).

. On family correlations in mortality, see Collver (1963) and Ja-

quard (1982); on class differences in mortality as a source of mor-
tality correlations within kin groups, see Pamuk (1985).

. In the United States of 1900, child mortality was strongly associ-

ated with parity (Smith 1983). In the developed world, high fertili-
ty has been associated with low economic status since the late
nineteenth century; in natural fertility populations, however, the
relationship is often the opposite because the wealthy have the
resources needed for early marriage. Thus, assuming that high
mortality is associated with low economic status, we might expect
an inverse correlation between fertility and mortality in many
populations. Microsimulations generally ignore the relationship
between fertility and mortality. In general, a positive correlation
between these two variables tends to counteract the Whopper
Assumption, whereas a negative correlation aggravates it.

. Asin table 1, the standard deviation of kin is lowest when no fer-

tility correlation is assumed. Unlike table 1, however, the percen-
tage without any cousins is highest when there is no correlation,
simply because the low mean number of cousins cancels out the
distribution effect. Thus, depending on the perspective of
measurement, the general rule that simulations overestimate the
proportion of people without kin can be reversed; in this example,
at least, the Whopper Assumption actually leads to an
underestimate of the proportion without cousins.

. The analytic models of this sort are shown in Coale (1965), Burch

(1970), Glass (1966), Wrigley (1969); also see Wrigley (1978),
Bradley and Mendels (1978), Mendels (1978). The principal
historical microsimulation models of family and kin include SOC-
SIM, described in Wachter, Hammel, and Laslett (1978), Ham-
mel and Wachter (1977), Hammel and Deuer (1977), and Hammel
et al. (1976); CAMSIM, described in Laslett (1984) and J.E.
Smith (1987); and MOMSIM, my own model (Ruggles 1986,
1987) and De Vos and Ruggles (1988); also see LeBras (1973).

. In the 1910 public use sample (Strong et al. 1989), the correlation

in age at marriage among mothers residing with married daugh-
ters was .1672, significant at the .01 level.

. That a positive correlation existed between marriage age and par-

ental longevity in the preindustrial West is now a commonplace;
see, for example, Ohlin (1961), Wrigley (1978), Hajnal (1982),
Berkner (1972), Goody, Thirsk, and Thompson (1976). Levine
(1982) proposed the revisionist argument that there was an inverse
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relationship between marriage age and parental longevity in
preindustrial England, but his analysis is badly flawed; see Rug-
gles (1987, 91).

13. One would expect that if parental longevity was the determining
factor in age at marriage, exceptionally long generations would
tend to be followed by short ones, because the parents would be
older at the birth of their children. Although this could reduce the
correlation of generation lengths, it would not enhance the
possibilities for three-generation families as long as the in-
heritance rule was maintained.

14. An exception to this generalization arises in the analysis of kin
types unlikely to occur in combination. For example, the Whop-
per Assumption does not affect the proportion of the population
with a living mother, because it is only possible to have one
mother—and her chance of being alive depends entirely on her
own characteristics. Problems can still arise, however, if we are
interested in the characteristics of the reference person: for exam-
ple, the proportion of the married population with a living
mother could be biased by a correlation between marriage and
parental longevity. But the main problems occur when we are
analyzing combinations of kin. Analyses of orphanhood—such as
those of Lotka (1931) or LeBras (1973), for example —involve
calculating the simultaneous survival of mothers and fathers and
are distorted by any demographic correlations between the two
parents. The larger the group of kin we are analyzing, the greater
is the potential for error. It is possible, for example, to have many
grandchildren. If grandchildren in a given kin group behave ho-
mogeneously with respect to mortality, then the odds are greater
that all will have died or that all will survive. The greater the detail
with which we measure kin types, the fewer the problems that
crop up as a result of assuming no systematic relationships bet-
ween the characteristics of different members of the same kin
group, because the probability that a category of kin will occur in
combination is reduced if categories of kin are defined narrowly.

The odds are generally high that an individual will have multiple
living siblings, but the odds of having multiple widowed sisters
between the ages of 45 and 49 are always low. If there is never (or
almost never) more than one individual within a given category of
kin, the Whopper Assumption is largely circumvented. Nonethe-
less, this strategy creates a new problem: if we divide kin types in-
to narrow categories, the results of a simulation become too un-
wieldy to interpret. I have devised a strategy for analyzing the im-
pact of demography on family structure that minimizes the im-
pact of the Whopper Assumption by assuming that it results in
constant proportional errors across different populations (see
Ruggles 1986, 1987).
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